
BÉZOUT’S THEOREM AND AN IRRELEVANT POINT

THOMAS HALES

In the textbook I’m using for a first course in algebraic geometry, the proof of
Bézout’s theorem is awful. Looking around, I find an abundance of awful proofs.
Here I give a proof due to Gurjar and Pathak that is not awful. I refer to their proof1

for full details.

Theorem 1 (Bézout). Let k be an algebraically closed field. Let f(X, Y, Z), g(X, Y, Z) ∈
k[X, Y, Z] be homogeneous polynomials of degrees m and n. Assume that the projec-
tive curves defined by f and g have no irreducible components in common. For each
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Figure 1. The four intersection points of two ellipses in the projective
plane can be viewed as four lines that pass through the irrelevant point
in three-dimensional affine space.
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p ∈ P2(k), let µp be the intersection multiplicity of f = g = 0 at p. Then∑
p

µp = mn.

That is, the number of points of intersection of the curves f = 0 and g = 0, counted
with multiplicity, is mn.

In what follows, we will always count multiplicities, even if we do not constantly
repeat the phrase counted with multiplicity. We will use the term multiset to refer
to a set with multiplicity. The multiplicity is zero, except at points where the two
curves intersect.

Recall that P2 is the set of lines in k3. It is constructed by removing the origin 0,
which is called the irrelevant point, and taking the quotient P2 = (k3 \ 0)/k×. The
proof will use the geometry of k3, rather than P2, including the irrelevant point 0.
In fact, the irrelevant point will be the key to the proof. The multiset of solutions of

(1) f(X, Y, Z) = g(X, Y, Z) = 0,

can be viewed as a finite multiset of lines in k3, with multiplicities µp. Thus, µp = 2
indicates a doubled line associated with the point p ∈ P2, and µp = 3 indicates a
tripled line, etc.

We will need some basic facts about intersections of lines with lines in the plane.
We say that two lines in a plane meet transversally if the two lines are distinct and
are not parallel. In such a case, the lines meet at a single point with multiplicity
one. Extending this to multiple lines, a multiset of m lines and a mutiset of n lines
in a plane – such that each of the first group of lines meets each of the second group
transversally – gives mn points of intersection, counted with multiplicity.

Similar results hold for intersections of lines with a plane in three-dimensional
affine space. An intersection of a line with a plane is transversal if the line is not
parallel to the plane and is not contained in the plane. In this case, the line and
plane meet at a single point with multiplicity one. A multiset of ` lines – such that
each line is transversal to the plane – meets the plane in ` points, counted with
multiplicity.

Proof. Let L be the multiset of lines in k3 defined by (1), and set ` :=
∑

p µp. By
construction, the number of lines in L counted with multiplicity is `.

Using a linear transformation of k3, we assume without generality that the mono-
mial Z is not a factor of fg. We may also assume without loss of generality that no
line of L lies in the plane Z = 0.

To prove Bézout’s theorem, we count L a second way to show ` = mn. Each line
of L meets the plane Z = 0 transversally at the irrelevant point. Thus, the number
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` of lines is equal to the multiplicity of the intersection of L with the plane Z = 0.
This intersection is given by the equations:

f(X, Y, Z) = g(X, Y, Z) = Z = 0,

or equivalently by the equations

(2) f(X, Y, 0) = 0, g(X, Y, 0) = 0,

in the plane k2 = {(x, y, 0) | x, y ∈ k}.
We count solutions to (2). The polynomial f(X, Y, 0) is homogeneous of degree m,

by our assumption about the monomial Z not being a factor of f . By the fundamental
theorem of algebra, the polynomial factors into a product of linear factors

f(X, Y, 0) = (a1X + b1Y )(a2X + b2Y ) · · · (amX + bmY ).

Hence f(X, Y, 0) = 0 defines a multiset L1 of m lines in k2 through the origin. By
similar reasoning, g(X, Y, 0) = 0 defines a multiset L2 of n lines in k2 through the
origin. The lines of L1 meet the lines of L2 transversally, by our assumptions about
the plane Z = 0 not containing any line of L. Hence (2) gives the equations for the
transversal intersection of m lines with n lines at the irrelevant point, for a total of
mn intersections, counted with multiplicity. Thus, ` = mn. �
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