BÉZOUT'S THEOREM AND AN IRRELEVANT POINT

THOMAS HALES

In the textbook I'm using for a first course in algebraic geometry, the proof of Bézout's theorem is awful. Looking around, I find an abundance of awful proofs. Here I give a proof due to Gurjar and Pathak that is not awful. I refer to their proof ${ }^{1}$ for full details.

Theorem 1 (Bézout). Let k be an algebraically closed field. Let $f(X, Y, Z), g(X, Y, Z) \in$ $k[X, Y, Z]$ be homogeneous polynomials of degrees m and n. Assume that the projective curves defined by f and g have no irreducible components in common. For each
${ }^{1}$ RV Gurjar and AK Pathak, A short proof of Bézout's theorem in \mathbb{P}^{2}. Communications in Algebra, 38:7, 2010, pp.2585-2587.

Figure 1. The four intersection points of two ellipses in the projective plane can be viewed as four lines that pass through the irrelevant point in three-dimensional affine space.
$p \in \mathbb{P}^{2}(k)$, let μ_{p} be the intersection multiplicity of $f=g=0$ at p. Then

$$
\sum_{p} \mu_{p}=m n
$$

That is, the number of points of intersection of the curves $f=0$ and $g=0$, counted with multiplicity, is mn .

In what follows, we will always count multiplicities, even if we do not constantly repeat the phrase counted with multiplicity. We will use the term multiset to refer to a set with multiplicity. The multiplicity is zero, except at points where the two curves intersect.

Recall that \mathbb{P}^{2} is the set of lines in k^{3}. It is constructed by removing the origin 0 , which is called the irrelevant point, and taking the quotient $\mathbb{P}^{2}=\left(k^{3} \backslash 0\right) / k^{\times}$. The proof will use the geometry of k^{3}, rather than \mathbb{P}^{2}, including the irrelevant point 0 . In fact, the irrelevant point will be the key to the proof. The multiset of solutions of

$$
\begin{equation*}
f(X, Y, Z)=g(X, Y, Z)=0 \tag{1}
\end{equation*}
$$

can be viewed as a finite multiset of lines in k^{3}, with multiplicities μ_{p}. Thus, $\mu_{p}=2$ indicates a doubled line associated with the point $p \in \mathbb{P}^{2}$, and $\mu_{p}=3$ indicates a tripled line, etc.

We will need some basic facts about intersections of lines with lines in the plane. We say that two lines in a plane meet transversally if the two lines are distinct and are not parallel. In such a case, the lines meet at a single point with multiplicity one. Extending this to multiple lines, a multiset of m lines and a mutiset of n lines in a plane - such that each of the first group of lines meets each of the second group transversally - gives $m n$ points of intersection, counted with multiplicity.

Similar results hold for intersections of lines with a plane in three-dimensional affine space. An intersection of a line with a plane is transversal if the line is not parallel to the plane and is not contained in the plane. In this case, the line and plane meet at a single point with multiplicity one. A multiset of ℓ lines - such that each line is transversal to the plane - meets the plane in ℓ points, counted with multiplicity.

Proof. Let L be the multiset of lines in k^{3} defined by (1), and set $\ell:=\sum_{p} \mu_{p}$. By construction, the number of lines in L counted with multiplicity is ℓ.

Using a linear transformation of k^{3}, we assume without generality that the monomial Z is not a factor of $f g$. We may also assume without loss of generality that no line of L lies in the plane $Z=0$.

To prove Bézout's theorem, we count L a second way to show $\ell=m n$. Each line of L meets the plane $Z=0$ transversally at the irrelevant point. Thus, the number
ℓ of lines is equal to the multiplicity of the intersection of L with the plane $Z=0$. This intersection is given by the equations:

$$
f(X, Y, Z)=g(X, Y, Z)=Z=0
$$

or equivalently by the equations

$$
\begin{equation*}
f(X, Y, 0)=0, \quad g(X, Y, 0)=0 \tag{2}
\end{equation*}
$$

in the plane $k^{2}=\{(x, y, 0) \mid x, y \in k\}$.
We count solutions to (2). The polynomial $f(X, Y, 0)$ is homogeneous of degree m, by our assumption about the monomial Z not being a factor of f. By the fundamental theorem of algebra, the polynomial factors into a product of linear factors

$$
f(X, Y, 0)=\left(a_{1} X+b_{1} Y\right)\left(a_{2} X+b_{2} Y\right) \cdots\left(a_{m} X+b_{m} Y\right)
$$

Hence $f(X, Y, 0)=0$ defines a multiset L_{1} of m lines in k^{2} through the origin. By similar reasoning, $g(X, Y, 0)=0$ defines a multiset L_{2} of n lines in k^{2} through the origin. The lines of L_{1} meet the lines of L_{2} transversally, by our assumptions about the plane $Z=0$ not containing any line of L. Hence (2) gives the equations for the transversal intersection of m lines with n lines at the irrelevant point, for a total of $m n$ intersections, counted with multiplicity. Thus, $\ell=m n$.

